Бизнес портал - LubyankaHall

Правило Лопиталя

Правило Лопиталя представляет собой метод вычисления пределов, имеющих неопределенность типа или . Пусть a является некоторым конечным действительным числом или равно бесконечности.

Правило Лопиталя можно также применять к неопределенностям типа . Первые две неопределенности можно свести к типу или с помощью алгебраических преобразований. А неопределенности сводятся к типу с помощью соотношения

Правило Лопиталя справедливо также и для односторонних пределов.

Пример 1

Вычислить предел .

Решение.

Дифференцируя числитель и знаменатель, находим значение предела:

Пример 2

Вычислить предел .

Решение.

Поскольку прямая подстановка приводит к неопределенности типа , применяем правило Лопиталя.

Пример 3

Вычислить предел .

Решение.

Здесь мы имеем дело с неопределенностью типа . После простых преобразований, получаем

Пример 4

Найти предел .

Решение.

Используя правило Лопиталя, можно записать

Пример 5

Найти предел .

Решение.

Здесь мы встречаемся с неопределенностью типа . Обозначим . После логарифмирования получаем

Соответственно,

Пример 6

15. Правила Лопиталя*

Швейцарский математик Иоганн I Бернулли (1667-1748) после успешного окончания Базельского университета, путешествуя по Европе, в 1690 году приезжает в Париж. В литературном салоне философа Никола Мальбранша (1638-1715) Иоганн знакомится с французским математиком маркизом Гийомом Франсуа Антуаном де Лопиталем (1661-1704). В ходе оживленной беседы Лопиталь удивился, как легко, “как бы играя”, юнец Бернулли решал трудные задачи по новому исчислению. Поэтому Лопиталь попросил прочитать ему несколько лекций. Устные беседы понравились Лопиталю, и он за приличный гонорар стал получать материалы в письменном виде. Заметим, что общеизвестное теперь “правило Лопиталя” для раскрытия неопределенностей также было передано ему Иоганном. Уже в 1696 году появился знаменитый трактат Лопиталя “Введение в анализ бесконечно малых для понимания кривых линий”. Вторая часть курса, изложенного Иоганном I Бернулли, была опубликована лишь в 1742 году и называлась “Математические лекции о методе интегралов и другие; написаны для знаменитого маркиза Госпиталия; годы 1691-1692”. В 1921 году были обнаружены рукописные копии лекций, написанные рукой Иоганна I Бернулли, оригиналы которых были переданы Лопиталю в 1691-1692 гг. Из них ученые неожиданно обнаружили, что Лопталь в своем “Анализе” почти не отступал от лекций своего молодого учителя.

Теорема (Коши). Пусть функции и непрерывны на , дифференцируемы на и . Тогда :

Доказательство. Рассмотрим функцию

Выберем так, чтобы выполнялись все условия теоремы Ролля, т.е. .

По теореме Ролля существует :

Первое правило Лопиталя

Определение. Пусть функции , непрерывны на , дифференцируемы в , причем . Пусть . Тогда говорят, что отношение при представляет собой неопределенность вида .

Теорема.

Применим теорему Коши к отрезку , где . Существует :

и, значит,

Это и означает, что .

В случае, когда бесконечно, неравенство (1) заменяется на

в зависимости от знака . В остальном доказательство не меняется.

Второе правило Лопиталя

Определение. Пусть функции , непрерывны и дифференцируемы в , причем . Пусть . Тогда говорят, что отношение при представляет собой неопределенность вида .

Теорема. Если при указанных условиях существует

Доказательство. Пусть конечно. По выберем : в интервале выполняется неравенство

Определим функцию из условия

при . Применим к отрезку теорему Коши. Получим, что существует :

Для тех , для которых

Так как произвольно мало, то

В случае, когда , неравенство (2) заменяется на

а неравенство (4) – на неравенство

имеющим место при , достаточно близких к a в силу (3).

Аналогично рассматривается случай .

  • Правило Лопиталя и раскрытие неопределённостей
  • Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"
  • Раскрытие неопределённостей вида "ноль умножить на бесконечность"
  • Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"
  • Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Правило Лопиталя и раскрытие неопределённостей

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей значительно упрощается с помощью правила Лопиталя.

Суть правила Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Вообще, под правилами Лопиталя понимаются несколько теорем, которые могут быть переданы в следующей одной формулировке.

Правило Лопиталя . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки , за исключением, может быть, самой точки , причём в этой окрестности

(1)

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

В равенстве (1) величина , к которой стремится переменная, может быть либо конечным числом, либо бесконечностью, либо минус бесконечностью.

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить

x =2 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 2. Вычислить

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Если предел отношения производных представляет собой неопределённость вида 0/0 или ∞/∞, то можно снова применить правило Лопиталя, т.е. перейти к пределу отношения вторых производных, и т.д.

Пример 5. Вычислить

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.

Теорема (правило Лопиталя ). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a , за исключением, быть может, самой точки a , и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x а, причем

(1)

Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание . Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.

Например, найти . Этот предел существует . Но отношение производных (1+ cosx)/ 1= 1+ cos x при x →∞ не стремится ни к какому пределу.

Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.

Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.

Для раскрытия неопределенностей 1 ∞ , 1 0 , ∞ 0 нужно прологарифмировать данную функцию и найти предел ее логарифма.

Примеры.

ФОРМУЛА ТЕЙЛОРА

Пусть функция y= f(x) задана на (a, b) и x 0 Î (a, b). Поставим следующую задачу: найти многочлен P(x) , значения которого в окрестности точки x 0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x 0 можно заменить более легкой задачей вычисления значений P(x) .

Пусть искомый многочлен имеет степень n P(x) = P n (x) . Будем искать его в виде

(1)

В этом равенстве нам нужно найти коэффициенты .

Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств:

Пусть функция y= f(x) имеет производные до n-ого порядка. Найдем коэффициенты многочлена P n (x ) исходя из условия равенства производных.

Введем обозначение n ! = 1·2·3…n , 0! = 1, 1! = 1.

Подставим в (1) x = x 0 и найдем , но с другой стороны . Поэтому

Учитывая третье условие и то, что

Очевидно, что и для всех последующих коэффициентов будет верна формула

Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен:

Обозначим и назовем эту разность n -ым остаточным членом функции f(x) в точке x 0 . Отсюда и, следовательно, если остаточный член будет мал.

Оказывается, что если x 0 Î (a , b ) при всех x Î (a , b ) существует производная f (n+1) (x ), то для произвольной точки x Î (a, b) существует точка, лежащая между x 0 и x такая, что остаток можно представить в виде:

Это так называемая формула Лагранжа для остаточного члена.

Где x Î (x 0 , x ) называется формулой Тейлора .

Если в этой формуле положить x 0 = 0, то она запишется в виде

где x Î ( x 0 , x ). Этот частный случай формулы Тейлора называют формулой МакЛорена .

РАЗЛОЖЕНИЕ ПО ФОРМУЛЕ МАКЛОРЕНА НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

  1. Рассмотрим функцию f(x)=e x . Представим ее по формуле МакЛорена в виде суммы многочлена и некоторого остатка. Для этого найдем производные до (n +1) порядка:

    Таким образом, получаем

    Используя эту формулу и придавая x различные значения, мы сможем вычислить значение e x .

    Например, при x =1, ограничиваясь n =8, получим формулу, позволяющую найти приближенное значение числа e :

    причем остаток

    Отметим, что для любого x Î R остаточный член

    Действительно, так как ξ Î (0; x ), то величина e ξ ограничена при фиксированном x . При x > 0 e ξ < e x . Докажем, что при фиксированном x

    Имеем

    Если x зафиксировано, то существует натуральное число N такое, что |x |<N .

    Обозначим Заметив, что 0n>N можем написать

    Но , не зависящая от n , а так как q<1. Поэтому Следовательно,

    Таким образом, при любом x , взяв достаточное число слагаемых, мы можем вычислить e x с любой степенью точности.

  2. Выпишем разложение по формуле МакЛорена для функции f(x) =sin x .

    Найдем последовательные производные от функции f(x) =sin x .

    Подставляя полученные значения в формулу МакЛорена, получим разложение:

    Несложно заметить, что преобразовав n -й член ряда, получим

    Так как , то аналогично разложению e x можно показать, что для всех x .

    Пример . Применим полученную формулу для приближенного вычисления sin 20°. При n =3 будем иметь:

    Оценим сделанную погрешность, которая равна остаточному члену:

    Таким образом, sin 20°= 0,342 с точностью до 0,001.

  3. f(x) = cos x . Аналогично предыдущему разложению можно вывести следующую формулу:

ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИИ

Вспомним сначала определения возрастающей и убывающей функций.

Функция y=f(x) , определенная на некотором отрезке [a, b ] (интервале (a, b )), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b ] соответствует большее значение функции, то есть если x 1 < x 2 , то f(x 1 ) < f(x 2 ) .

Функцияy=f(x) называется убывающей на некотором отрезке [a, b ], если меньшему значению аргумента x из [a, b ]соответствует большее значение функции, то есть если x 1 < x 2 , то f(x 1 ) > f(x 2 ) .

Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.

Функция y=f(x) называется постоянной на некотором отрезке [a, b ], если при изменении аргумента x она принимает одни и те же значения.

Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции.

(-∞, a ), (c , +∞) – убывает;

(a, b ) – постоянная;

(b, c ) – возрастает.

Применим понятие производной для исследования возрастания и убывания функции.

Теорема 1. (Необходимое и достаточное условия возрастания функции)

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является matematikam.ru.

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя . Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли . Сформулировал его швейцарский математик Иоганн Бернулли , а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про пределы в математике и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0 . Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0 :

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0 :

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Теперь перейдем к примерам.

Пример 1

Найти предел по правилу Лопиталя:

Пример 2

Вычислить с использованием правила Лопиталя:

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а , то правило Лопиталя можно применять несколько раз.

Найдем предел (n – натуральное число). Для этого применим правило Лопиталя n раз:

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам . Они с радостью помогут разобраться в тонкостях решения.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: